Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Eur J Neurol ; 29(2): 535-542, 2022 02.
Article in English | MEDLINE | ID: covidwho-2252981

ABSTRACT

BACKGROUND AND PURPOSE: Some studies have shown that air pollution, often assessed by thin particulate matter with diameter below 2.5 µg/m3 (PM2.5), may contribute to severe COVID-19 courses, as well as play a role in the onset and evolution of multiple sclerosis (MS). However, the impact of air pollution on COVID-19 has never been explored specifically amongst patients with MS (PwMS). This retrospective observational study aims to explore associations between PM2.5 and COVID-19 severity amongst PwMS. METHODS: Data were retrieved from an Italian web-based platform (MuSC-19) which includes PwMS with COVID-19. PM2.5 2016-2018 average concentrations were provided by the Copernicus Atmospheric Monitoring Service. Italian patients inserted in the platform from 15 January 2020 to 9 April 2021 with a COVID-19 positive test were included. Ordered logistic regression models were used to study associations between PM2.5 and COVID-19 severity. RESULTS: In all, 1087 patients, of whom 13% required hospitalization and 2% were admitted to an intensive care unit or died, were included. Based on the multivariate analysis, higher concentrations of PM2.5 increased the risk of worse COVID-19 course (odds ratio 1.90; p = 0.009). CONCLUSIONS: Even if several other factors explain the unfavourable course of COVID-19 in PwMS, the role of air pollutants must be considered and further investigated.


Subject(s)
Air Pollution , COVID-19 , Multiple Sclerosis , Air Pollution/adverse effects , Air Pollution/analysis , Humans , Multiple Sclerosis/epidemiology , Particulate Matter/analysis , Particulate Matter/toxicity , SARS-CoV-2
2.
Mult Scler Relat Disord ; 68: 104243, 2022 Oct 20.
Article in English | MEDLINE | ID: covidwho-2076554

ABSTRACT

BACKGROUND: Many studies investigated the association between air pollution and Covid-19 severity but the only study focusing on patients with Multiple Sclerosis (MS) exclusively evaluated exposure to PM2.5. We aim to study, in a sample of MS patients, the impact of long-term exposure to PM2.5, PM10 and NO2 on Covid-19 severity, described as occurrence of pneumonia. METHODS: A 1:2 ratio case-control study was designed, differentiating cases and controls based on Covid-19 pneumonia. Associations between pollutants and outcome were studied using logistic regression. Weighted quantile sum (WQS) logistic regression was used to identify the individual contribution of each pollutant within the mixture; Least Absolute Shrinkage and Selection Operator (LASSO) penalized regression was performed to confirm the variable selection from WQS. All the analyses were adjusted for confounders selected a priori. RESULTS: Of the 615 eligible patients, 491 patients provided detailed place of exposure and were included in the principal analysis. Higher concentrations of air pollutants were associated with increased odds of developing Covid-19 pneumonia (PM2.5: 3rd vs 1st tercile OR(95% CI)=2.26(1.29;3.96); PM10: 3rd vs 1st tercile OR(95% CI)=2.12(1.22;3.68); NO2: 3rd vs 1st tercile OR(95% CI)=2.12(1.21;3.69)). Pollutants were highly correlated with each other; WQS index was associated to an increased risk of pneumonia (ß=0.44; p-value=0.004) and the main contributors to this association were NO2 (41%) and PM2.5 (34%). Consistently, Lasso method selected PM2.5 and NO2. CONCLUSIONS: Higher long-term exposure to PM2.5, PM10 and NO2 increased the odds of Covid-19 pneumonia among MS patients and the most dangerous pollutants were NO2 and PM2.5.

3.
Environmetrics ; 33(4): e2723, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1843899

ABSTRACT

When a new environmental policy or a specific intervention is taken in order to improve air quality, it is paramount to assess and quantify-in space and time-the effectiveness of the adopted strategy. The lockdown measures taken worldwide in 2020 to reduce the spread of the SARS-CoV-2 virus can be envisioned as a policy intervention with an indirect effect on air quality. In this paper we propose a statistical spatiotemporal model as a tool for intervention analysis, able to take into account the effect of weather and other confounding factor, as well as the spatial and temporal correlation existing in the data. In particular, we focus here on the 2019/2020 relative change in nitrogen dioxide (NO 2 ) concentrations in the north of Italy, for the period of March and April during which the lockdown measure was in force. We found that during March and April 2020 most of the studied area is characterized by negative relative changes (median values around - 25%), with the exception of the first week of March and the fourth week of April (median values around 5%). As these changes cannot be attributed to a weather effect, it is likely that they are a byproduct of the lockdown measures. There are two aspects of our research that are equally interesting. First, we provide a unique statistical perspective for calculating the relative change in the NO 2 by jointly modeling pollutant concentrations time series. Second, as an output we provide a collection of weekly continuous maps, describing the spatial pattern of the NO 2 2019/2020 relative changes.

4.
Appl Sci (Basel) ; 12(7): 1-52, 2022 Apr 02.
Article in English | MEDLINE | ID: covidwho-1785492

ABSTRACT

Airborne particulate matter (PM) is a pollutant of concern not only because of its adverse effects on human health but also on visibility and the radiative budget of the atmosphere. PM can be considered as a sum of solid/liquid species covering a wide range of particle sizes with diverse chemical composition. Organic aerosols may be emitted (primary organic aerosols, POA), or formed in the atmosphere following reaction of volatile organic compounds (secondary organic aerosols, SOA), but some of these compounds may partition between the gas and aerosol phases depending upon ambient conditions. This review focuses on carbonaceous PM and gaseous precursors emitted by road traffic, including ultrafine particles (UFP) and polycyclic aromatic hydrocarbons (PAHs) that are clearly linked to the evolution and formation of carbonaceous species. Clearly, the solid fraction of PM has been reduced during the last two decades, with the implementation of after-treatment systems abating approximately 99% of primary solid particle mass concentrations. However, the role of brown carbon and its radiative effect on climate and the generation of ultrafine particles by nucleation of organic vapour during the dilution of the exhaust remain unclear phenomena and will need further investigation. The increasing role of gasoline vehicles on carbonaceous particle emissions and formation is also highlighted, particularly through the chemical and thermodynamic evolution of organic gases and their propensity to produce particles. The remaining carbon-containing particles from brakes, tyres and road wear will still be a problem even in a future of full electrification of the vehicle fleet. Some key conclusions and recommendations are also proposed to support the decision makers in view of the next regulations on vehicle emissions worldwide.

5.
Atmospheric Chemistry and Physics ; 21(10):7597-7609, 2021.
Article in English | ProQuest Central | ID: covidwho-1239091

ABSTRACT

The COVID-19 lockdown measures gradually implemented in Lombardy (northern Italy) from 23 February 2020 led to a downturn in several economic sectors with possible impacts on air quality. Several communications claimed in the first weeks of March 2020 that the mitigation in air pollution observed at that time was actually related to these lockdown measures without considering that seasonal variations in emissions and meteorology also influence air quality. To determine the specific impact of lockdown measures on air quality in northern Italy, we compared observations from the European Commission Atmospheric Observatory of Ispra (regional background) and from the regional environmental protection agency (ARPA) air monitoring stations in the Milan conurbation (urban background) with expected values for these observations using two different approaches. On the one hand, intensive aerosol variables determined from specific aerosol characterisation observations performed in Ispra were compared to their 3-year averages. On the other hand, ground-level measured concentrations of atmospheric pollutants (NO2, PM10, O3, NO, SO2) were compared to expected concentrations derived from the Copernicus Atmosphere Monitoring Service Regional (CAMS) ensemble model forecasts, which did not account for lockdown measures. From these comparisons, we show that NO2 concentrations decreased as a consequence of the lockdown by -30 % and-40 % on average at the urban and regional background sites, respectively. Unlike NO2, PM10 concentrations were not significantly affected by lockdown measures. This could be due to any decreases in PM10 (and PM10 precursors) emissions from traffic being compensated for by increases in emissions from domestic heating and/or from changes in the secondary aerosol formation regime resulting from the lockdown measures. The implementation of the lockdown measures also led to an increase in the highest O3 concentrations at both the urban and regional background sites resulting from reduced titration of O3 by NO. The relaxation of the lockdown measures beginning in May resulted in close-to-expected NO2 concentrations in the urban background and to significant increases in PM10 in comparison to expected concentrations at both regional and urban background sites.

SELECTION OF CITATIONS
SEARCH DETAIL